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Figure 1: Given a video frame (t− k) with a pre-segmented foreground subject, our new mask transfer approach is able to predict the mask
at non-successive unsegmented frames (e.g., t+ k), in a more accurate manner than by sequential frame-to-frame propagation. We are then
able to accurately estimate the mask at intermediate frames, such as t, using bi-directional mask transfer, referred to as mask interpolation.
Note that no manual corrections were applied to the segmentations shown in frames t+ k and t. Please view the companion video!

Abstract

We introduce JumpCut, a new mask transfer and interpolation
method for interactive video cutout. Given a source frame for which
a foreground mask is already available, we compute an estimate
of the foreground mask at another, typically non-successive, target
frame. Observing that the background and foreground regions typ-
ically exhibit different motions, we leverage these differences by
computing two separate nearest-neighbor fields (split-NNF) from
the target to the source frame. These NNFs are then used to jointly
predict a coherent labeling of the pixels in the target frame. The
same split-NNF is also used to aid a novel edge classifier in detect-
ing silhouette edges (S-edges) that separate the foreground from the
background. A modified level set method is then applied to produce
a clean mask, based on the pixel labels and the S-edges computed
by the previous two steps. The resulting mask transfer method may
also be used for coherently interpolating the foreground masks be-
tween two distant source frames. Our results demonstrate that the
proposed method is significantly more accurate than the existing
state-of-the-art on a wide variety of video sequences. Thus, it re-
duces the required amount of user effort, and provides a basis for
an effective interactive video object cutout tool.

CR Categories: I.4.6 [Image Processing and Computer Vision]:
Segmentation—pixel classification;

Keywords: video segmentation, foreground extraction, object
cutout
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1 Introduction

Video foreground extraction is routinely used in TV and movie pro-
duction for compositing visual elements from a variety of different
sources onto a new video background. The challenges involved
in accurately separating complex dynamic objects from the back-
ground in natural videos, as well as the need for creative control,
render automatic methods impractical for the task. Thus, over the
past decade, considerable research efforts focused on development
of effective interactive tools. However, despite impressive progress
in interactive foreground extraction [Bai et al. 2009; Zhong et al.
2012], the task still requires considerable user effort and expertise.

Specifically, state-of-the-art methods are still challenged by color
and/or texture ambiguities between foreground and background re-
gions, by low contrast edges separating the foreground elements
from the background, and by fast foreground motion, which typ-
ically involves non-rigid deformations and drastic changes in the
foreground region’s topology.

In this work, we describe a new tool for interactive foreground ex-
traction that specifically targets large and non-rigid foreground mo-
tions. We address the problem of interactive video cutout, where
the task is to extract a binary mask labeling the pixels of each frame
as foreground or background. A soft-edged alpha matte can be ob-
tained, if needed, by using our mask as a basis for a trimap [Chuang
et al. 2002].

The basic computational element that we focus on in this work is
mask transfer: given a correctly segmented source frame, the goal
is to compute the foreground mask in another, non-successive target
frame (Figure 1). In practice, the mask transfer distance is typically
between 4 and 32 frames, depending on the speed of motion and
the amount of foreground deformation present in the video. As we
demonstrate in our results and companion video, the ability to per-
form such mask transfer accurately provides a basis for an effective
interactive video cutout tool.

Current state-of-the-art interactive methods, e.g., [Bai et al. 2009;
Zhong et al. 2012], rely on combinations of local and global clas-
sifiers. Bai et al. use local classifiers in square windows along the
foreground boundary, for which distant propagation is challenging,
while Zhong et al. use long directional windows, whose appropriate
sizes and directions are difficult to determine. Recent results indi-
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cate that PatchMatch [Barnes et al. 2009], a fast method for comput-
ing the nearest neighbor field (NNF) between two images, is effec-
tive for handling large displacement optical flow [Bao et al. 2014].
PatchMatch finds correspondences based on differences between
patches, simultaneously taking into account color and texture. It
computes NNFs that are piecewise spatially coherent, but may con-
tain distant correspondences due to its use of random search. How-
ever, the PatchMatch method sometimes gets stuck in local minima,
especially in the presence of color and texture ambiguities.

Our basic insight in this work, is that the displacements in the back-
ground (BG) and the foreground (FG) regions typically exhibit dif-
ferent and uncorrelated behavior. Specifically, the BG motion is
typically induced by camera motion with respect to the scene, while
FG motion is independent of the camera, and often features larger
displacements and non-rigid deformations. Thus, our approach at-
tempts to explicitly account for such differences, by tracking the
BG and FG regions using two separate NNFs (split-NNF). These
separate NNFs are better localized, and are thus less susceptible to
local minima.

A second key component of our approach is a new edge classifica-
tion process that leverages our split-NNF. Specifically, each salient
edge in the unsegmented target frame is classified into one of three
classes: edges inside the background region (B-edges), inside the
foreground (F-edges), and, most importantly, silhouette edges that
separate the two regions (S-edges). The classification is accom-
plished by a non-parametric, supervised classifier, which uses the
edges and the mask in the source frame as its training data.

To obtain the final, clean, mask for the target frame we apply a
method based on Level Sets [Osher and Fedkiw 2003]. This final
step is facilitated by the results of the previous two stages: the level
set method is initialized with the pixelwise mask predicted by our
split-NNF, and relies on the results of our edge classifier to snap to
nearby silhouette edges, while smoothing the target mask contour.

The entire process outlined above results in a new mask transfer
method that succeeds in propagating masks farther and more ac-
curately than existing state-of-the-art methods. Armed with this
improved non-consecutive mask transfer ability, we are also able
to implement a new mask interpolation mechanism, where given
two non-adjacent segmented frames we reconstruct the foreground
mask in the intermediate frames, in a coherent and accurate man-
ner.

2 Related Work

Video foreground extraction is routinely used in TV and movie pro-
duction for combining visual elements from different sources into a
single video stream. In a studio, foreground extraction may be ac-
complished using a constant color screen [Smith and Blinn 1996].
Extracting a dynamic foreground element from a natural video is a
much more challenging problem, which has attracted significant re-
search attention [Chuang et al. 2002; Agarwala et al. 2004; Li et al.
2005; Wang et al. 2005; Bai et al. 2009; Price et al. 2009; Tong
et al. 2011; Zhong et al. 2012].

In their pioneering work, Chuang et al. [2002] combine bi-
directional optical flow with background estimation to interpolate
a trimap across a video volume. Bayesian matting [Chuang et al.
2001] is then applied to compute a foreground matte at each frame.

Agarwala et al. [2004] describe a keyframe-based system for roto-
scoping: tracking the curve-based representation of a foreground
contour in a video sequence. Through the use of spacetime opti-
mization they propagate user constraints forward and backward in
the sequence.

Li et al. [2005] formulate the foreground extraction as a 3D graph-
cut problem over the spatio-temporal video volume, further refining
the results using 2D graphcuts inside tracked local windows. Wang
et al. [2005] also operate on the 3D video volume, and provide a
user interface for painting constraints directly in this volume. Tong
et al. [2011] describe a more intuitive and efficient user interface
for painting the constraints, based on local 3D graphcuts.

The LIVEcut system of Price et al. [2009] uses multiple cues with
2D graphcut optimization in order to propagate a selection forward,
frame by frame. The Video SnapCut system of Bai et al. [2009] ob-
tains the segmentation at each frame via a collaboration of a set of
overlapping localized classifiers, each of which integrates multiple
local features. This approach has been incorporated into Adobe Af-
terEffects, as the Rotobrush tool, and was later improved by a better
integration of motion and color models [Bai et al. 2010]. Because
these methods are based on statistics collected by a set of square lo-
cal windows centered along the foreground object’s boundary, they
have difficulty handling the temporal discontinuities that arise due
to large motions, or videos with inseparable statistics.

More recently, Zhong et al. [2012] advance the state-of-the-art fur-
ther by introducing unbiased directional classifiers, designed to
cope with larger foreground motions, while maintaining the advan-
tages of local statistics. They also propose a new way of combining
together multiple classifiers. However, for distant transfer it can be
difficult to determine the appropriate window sizes, and sampling
only four directions (0, 45, 90, 135 degrees) is not always enough.

Thus, despite impressive progress in interactive foreground extrac-
tion, it is still easy to find video sequences that challenge the exist-
ing state-of-the-art methods: videos with color and texture ambigui-
ties between foreground and background regions, where the motion
of the camera and/or the dynamic foreground object is significant.

In contrast to these previous methods, we base our mask propa-
gation on nearest neighbor fields (NNFs) between frames, and use
PatchMatch [Barnes et al. 2009] to compute them. PatchMatch is
based on differences between patches, thus seeking similarity in
both color and texture. Another advantage of PatchMatch, com-
pared to parametric classifiers, is that it explicitly encourages spa-
tially coherent NNFs. Nevertheless, it is still capable of captur-
ing large displacements and non-rigid motion due to its use of ran-
dom search. The effectiveness of PatchMatch for computing large
displacement optical flow has recently been demonstrated [Chen
et al. 2013; Bao et al. 2014]. Differently from these methods, our
method explicitly accounts for the typically different motion exhib-
ited by the background and the foreground regions. Specifically, we
track these two regions using two separately computed NNFs, each
of which is better localized, thereby reducing the susceptibility of
PatchMatch to local minima.

In the computer vision community there has been significant re-
search on segmentation tracking in video sequences (e.g., [Tsai
et al. 2010; Faktor and Irani 2014; Ramakanth and Babu 2014]).
Faktor and Irani [2014] also use the different motions of back-
ground and foreground to initialize their FG/BG classifier. Their
method appears to represent the state-of-the-art in automatic (un-
supervised) foreground extraction. However, the results of this and
other automatic methods are not yet robust or precise enough to
replace interactive cutout methods. This is shown in Section 4,
where we compare our method with SeamSeg [Ramakanth and
Babu 2014], currently the top performer on the SegTrack bench-
mark [Tsai et al. 2010].

The Level Set method has been extensively used in the context of
automatic and interactive image segmentation. We refer the reader
to Cremers et al. [2007] for an extensive review of the related liter-
ature. Below, we only highlight a few particularly related works.



Wang et al. [2014] describe an interactive system for image and
video segmentation, geared towards mobile devices with a touch
interface. Their approach is based on a level set framework, with
an appearance model sampled in the vicinity of the touched point.
Since this method relies on locally trained parametric models, it
is limited in practice to images with non-overlapping statistics of
foreground and background regions, and to videos with small dis-
placements.

Liu and Yu [2012] describe an interactive image segmentation
method, which employs a level set method that uses edge suppres-
sion to remove non-salient edges. Their level set has an edge field
term, which is defined using the distance transform with respect
to the salient edges. Our approach uses a level set with a similar
term, however, our edge classifier is discriminatively trained using
the segmented source frame from which we propagate the mask.

3 Method

3.1 Mask Transfer

Given a segmented source frame Is with a binary mask Ms that
indicates the foreground pixels in Is, and a target frame It, our goal
is to determine the target foreground mask Mt.

One approach to mask transfer is to classify each pixel in It as
either background (BG) or foreground (FG) using various classi-
fiers trained on the pair (Is,Ms). Another alternative is to com-
pute a dense correspondence ϕ matching each pixel x ∈ It with
ϕ(x) ∈ Is, and setting Mt(x) = Ms(ϕ(x)). In this work, we
choose the latter approach, since we believe it to be better suited
for transfers where the source and target frames are far from each
other in the video sequence, and both the BG and the FG regions
may be strongly displaced. Large displacements can also occur be-
tween successive frames in video sequences with fast camera and/or
FG object motion.

As mentioned earlier, we use a method based on PatchMatch
[Barnes et al. 2009] in order to compute the nearest neighbor field
(NNF) that serves as ϕ. We observe that the BG and FG regions in a
sequence are typically displaced in a different manner. The BG dis-
placement is often induced by the motion of the camera with respect
to the (mostly static) scene, while the FG displacement is typically
larger and less rigid. Thus, our idea is to leverage the two different
displacement modes by computing a separate NNF for each of the
two regions. This approach is illustrated in Figure 2.

Specifically, we start by aligning Is and It with respect to the mo-
tion of foreground and background, respectively. The FG alignment
is computed by template matching, where the masked foreground
of Is is the template, with the sum of squared differences inside
the mask serving as the matching metric. Having found the optimal
translation for the foreground region, we apply it to Is to obtain
the FG-aligned source Ifs . To align the background, we perform
feature matching between Is and It using SURF [Bay et al. 2008],
with outlier rejection via RANSAC. Next, we warp Is using the
rigid moving least squares (MLS) method [Schaefer et al. 2006]
under the constraints of the matched feature points, resulting in a
BG-aligned source Ibs .

Given the two aligned sources I∗s , ∗ ∈ {f, b}, we then compute
a pair of localized NNFs from It to I∗s . Our method is based on
PatchMatch [Barnes et al. 2009], but restricted to search only lo-
cally in order to achieve better accuracy and coherency. PatchMatch
computes an NNF by interleaving coherent propagation and random
search. Our localized PatchMatch differs from the original method
in three aspects: First, since It and I∗s are roughly aligned, it is not
necessary to randomly initialize the NNF, and an initial NNF with

a zero offset at each pixel is used instead. Second, in each iteration
of the random search, it is not necessary to sample the entire im-
age; instead, we randomly search only inside a local region of size
W ×W around each pixel, where W is set to one third of the im-
age’s diagonal. Although it might seem as a large window, one must
remember that the random search in PatchMatch is not an exhaus-
tive one: only a few random samples are drawn from that window.
Third, to further encourage local matches, we use a weighted com-
bination of the patch difference metric with the Euclidean distance.
The corresponding weights are 10 and 3 for transfers of up to 4
frames, and 10 and 1.5 for more distant transfers.

The computation of two separately aligned NNFs, as described
above, results in fewer errors in the NNF due to the use of local
search and the modified distance term. Having computed the two
NNFs, we now fuse them to a single NNF by selecting, for each
pixel in It, the NNF offset that yields the smaller patch difference.
The mask Mt is then predicted as described earlier in this section
(Mt(x) = Ms(ϕ(x))). The entire process is illustrated in Figure 2,
which also shows the transferred mask after a final refinement with
the level set method, as described in Section 3.4.

3.2 Mask Interpolation

The above technique can be extended to the case of mask inter-
polation, or bi-directional mask transfer, where we wish to predict
the foreground mask at a frame It, given two already segmented
frames, e.g., It−k and It+k. By leveraging two segmented source
frames, bi-directional transfer is usually able to predict the target
mask more accurately. Another advantage of this process is that
given the foreground contour on both sides, we can use shape in-
terpolation as a coherent shape prior. Our system performs inter-
polation hierarchically using binary subdivision; that is, given the
segmented source frames It−k and It+k, we first interpolate to the
midway frame It, and then recurse on each half until k = 1.

Our approach is to apply the technique described in the previous
section twice, once to transfer the mask from It−k to It and once
from It+k to It. Thus, we in fact make use of four separate NNFs.
But, here, instead of relying on template matching to roughly align
the segmented foreground with the target frame, we perform shape
matching on the two segmented masks, and use shape interpolation
to predict the location and shape of the intermediate frame mask.
The predicted shape is then used to more accurately align each of
the two segmented foreground regions with the target frame, result-
ing in more accurate foreground NNFs.

Shape matching is a well studied area, and we have initially consid-
ered using the state-of-the-art method of Ling and Jacobs [2007],
which uses inner-distances, and was shown to match well articu-
lated shapes with overall similarity. However, a drawback of this
approach is that it uses dynamic programming for globally opti-
mal correspondences, rendering it sensitive to occlusion and topol-
ogy changes, which frequently occur in our context. Furthermore,
in addition to the shape geometry, we would also like to leverage
color and texture features, which allow us to find reliable corre-
spondences without order constraints. Thus, we use the method
described below.

To perform shape matching, we start by extracting and simplify-
ing the two source mask contours1. Next, we compute correspon-
dences between pairs of points on the two contours. The similar-
ity of two contour points pi and pj is measured as a sum of three
terms: shape difference dshapeij , color difference dcolorij , and spatial
distance dspaceij . We use the mask patch (of size 31× 31) centered

1We use the standard OpenCV functions findContours and approx-
PolyDP.
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Figure 2: Mask transfer using split localized NNFs. Two warped versions Ibs and Ifs are generated from the source frame, and a separate
localized NNF is computed between the target frame and each of the two. Using the split-NNF results in a more accurate mask transfer than
using a single NNF. The mask is further improved by level set refinement (Section 3.4).
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Figure 3: Edge classification and level set refinement. (a) input target image; (b) edge map produced by the method of Dollár and Zitnick
[2013]; (c) result of edge classification (S-edges are drawn in red, F-edges in yellow, B-edges in blue); (d) level set result without using edge
classification, note the errors inside the red circles; (e) level set result using edge classification.

at each contour point to represent its local shape, and compute the
shape difference between two contour points as the SSD between
their corresponding patches (divided by the number of pixels in the
mask patch). The color associated with each point is computed as
the mean foreground color in a 15 × 15 image patch centered at
it, and dcolor is the L2 distance between these colors. Note that
only the colors inside the foreground are used, since the position of
the foreground shape over the background may change significantly
between different frames. The spatial distance dspaceij is defined as
‖pi + m − pj‖2, where m is the difference between the centers
(mean position of points) of the contours in It−k and It+k. The
final distance dij is computed as dij = dshapeij + dcolorij + dspaceij .

The pairwise correspondences computed using the point similarity
described above may contain many outliers, which are removed by
two additional steps. For each contour point i in It−k, we find the
best matching contour point Mi in It+k, and do the same in the
other direction. A correspondence is discarded unless the matches
in both directions agree. Furthermore, we insist that the ordering
of the matched points is monotonic; in other words, i > j implies
Mi >Mj . Matches that violate monotonicity are also discarded
as outliers.

Given the resulting set of matched pairs between the contours of
It−k and It+k, we predict the locations of the corresponding points

on the target frame It by linear interpolation. Next, each of It−k

and It+k is warped towards It using rigid MLS [Schaefer et al.
2006], resulting in two warped images Ift−k and Ift+k whose fore-
ground regions roughly predict the position and shape of the fore-
ground region in It.

Next, we also align the background regions of It−k and It+k with
the target It, exactly as described in Section 3.1, yielding another
pair of warped images Ibt−k and Ibt+k. Finally, we compute four
separate NNFs from the target frame It to each of the four warped
images above, and transfer the mask by using the NNF that yields
the best match at each pixel (again, as was done in Section 3.1).

3.3 Edge Classification

It has long been recognized that edges play a crucial role in figure-
ground separation in our visual perception [Rubin 2001], and many
image segmentation algorithms incorporate edges into the pro-
cess, reasoning that region boundaries should coincide with salient
edges. However, the mask transfer techniques described earlier are
based on NNFs and do not explicitly take edges into account. Fur-
thermore, the transferred masks are eventually cleaned up using the
level set method, as described in the next section. Thus, to incorpo-
rate edges into the process, and to prevent the mask from aligning



itself with irrelevant salient edges that might exist in its vicinity, we
attempt to classify all the salient edges in the target frame.

Specifically, we attempt to classify the salient edges in the im-
age into one of three classes: B-edges (entirely contained in the
background), F-edges (entirely contained in the foreground), and
S-edges (silhouette edges separating the foreground from the back-
ground). It should be noted, however, that in the remainder of our
pipeline, we currently only make use of the S-edges. The extra clas-
sification of B-edges and F-edges comes for free without any extra
computational effort, since each edge is classified by examining its
two sides as explained later. We use a simple non-parametric su-
pervised three-way classifier, whose training data is given by the
source frame and its mask. The edge classifier is in principle simi-
lar to a pixel classifier, since it is applied at individual edge points,
but it incorporates the orientation of the edge, and makes use of the
two colors on its two sides.

We begin by extracting an edge map from both source and tar-
get frames using the fast state-of-the-art method of Dollár and Zit-
nick [2013]. For each point whose edge response exceeds a certain
threshold we associate two pixels, one on each side of the edge. For
each such pixel we extract a 7-dimensional feature vector, consist-
ing of (r, g, b, x, y, sin θ, cos θ), where r, g, b are the colors, x, y
are the spatial coordinates, and θ is the orientation of the gradi-
ent. Each dimension is normalized to the range of [0, 1], and then
the color, space coordinates, and orientation are scaled by a factor
10.0, 2.0 and 5.0, respectively. We then classify the two pixels sep-
arately. This separation of the two sides is important, since we are
primarily interested in correctly classifying the S-edges, and since
the foreground is moving across the background, points on S-edges
rarely retain both of their colors.

Let pi and pj be the two pixels associated with an edge point, as
described above. Each of these points is classified as foreground
or background using a k-NN classifier. It should be noted that the
classifier adds the offsets provided by the NNFs to the spatial (x, y)
coordinates of the feature vectors. The edge point is then identified
as an S-edge point, if the labels of pi and pj differ. Our current
implementation uses FLANN [Muja and Lowe 2009] to accelerate
the nearest neighbor search, and k = 15 in all our results. Note
that having classified an edge point as silhouette, we also know on
which side of the edge lies the foreground. Figure 3 demonstrates
the results of our edge classifier, and their effect on the subsequent
level set contour.

3.4 Level Set Mask Refinement

The results of mask transfer and mask interpolation usually contain
some noise and do not always correctly follow the silhouette edges
of the foreground object. They may also contain some small iso-
lated incorrectly classified islands. We use an approach based on
the level set method to clean up the mask boundary, by smoothing
it and snapping it to nearby S-edges. Our method is an extension of
the popular Geodesic Active Contour method [Caselles et al. 1997].
Let φ : Ω → R denote the level set function, where Ω is the im-
age domain. We design φ such that its zero level yields the desired
foreground contour C:

Ct = {x ∈ Ω |φt(x) = 0}, (1)

where t is introduced for the evolution process. C0 is initialized
with the result of our NNF-based mask transfer (Section 3.1), and
φ0 is set to the signed distance transform applied toC0, with a posi-
tive sign in the interior (foreground) region, and negative elsewhere.

Having initialized φ0, the contour C is evolved by iteratively up-
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Figure 4: Dataset used in our experiments. An additional example,
tricking, is shown in Figure 1.

dating φ: φt = φt−1 + dφ, with dφ defined as:

dφ = αEg + βEe + γEm (2)

with the balancing weights set to α = 1, β = γ = 0.5 in all our
results (we did not observe particular sensitivity to the values of
these parameters).

The first term Eg is the geodesic active contour functional:

Eg = ‖∇φ‖div(
1

1 + τ |g(I)|2
∇φ
‖∇φ‖ ) (3)

which combines both image edges and a smoothness prior. g(I) is
the edge response produced by Dollár and Zitnick’s method, and τ
is set to 100.

For each classified S-edge e, we compute the L2 distance transform
ψe in its vicinity. The edge term is then defined as Ee = sψe,
where s ∈ {−1,+1} is positive on the interior side of the edge
and negative on the exterior side. The information of which side is
interior and which is exterior comes from the edge classifier. The
purpose of the edge term Ee is thus to attract the zero level set con-
tour towards nearby silhouette edges. A similar edge field term was
previously used by Liu and Yu [2012], but without the advantage of
having classified edges.

Finally, the mask prior Em is designed to penalize large deviations
from the results of the initial NNF-based mask, since our goal is
only to remove small errors and smooth the resulting contour. It
is defined as Em = ω sψc, where sψc is the signed L2 distance
transform from the initial mask contour C0, and ω is a weight field
computed from the residual error of the NNF: ω = exp(−u∆).
Here ∆ is the color difference to the nearest neighbor and u is a
scale factor (0.01 for all our results).

Figure 3 demonstrates the effect of the mask refinement step, and
in particular, shows the effect of the edge term Ee.

4 Results

In this section we present some of the results that we were able to
obtain using our method, and evaluate its performance, including
comparisons to several existing state-of-the-art methods.

We implemented our method in C++, with a GPU-accelerated im-
plementation of the PatchMatch algorithm. Our current implemen-
tation typically requires under 1.4 seconds to transfer a mask be-
tween two frames of size 960 × 540, on an Intel Core i7-2700K
3.50GHz CPU with 32G RAM and a GeForce 680 GPU with 4GB
of RAM. Currently, about 45 percent of the time is spent on Patch-
Match, 30 percent on edge classification, and 20 percent on level



Table 1: Error rates for automatic mask transfer across different frame distances for several different methods: RB – RotoBrush (based on
[Bai et al. 2009]), Z12 – [Zhong et al. 2012], SS – SeamSeg [Ramakanth and Babu 2014], JC – our JumpCut method (split localized NNFs).
The numbers in the top row indicate the mask transfer distance. The JumpCut method yields the smallest error in the vast majority of cases.

1 4 8 16 32

RB Z12 SS JC RB Z12 SS JC RB Z12 SS JC RB Z12 SS JC RB Z12 SS JC

ANIMAL bear 1.82 1.07 1.84 1.36 6.74 1.83 2.93 2.91 5.58 2.72 3.44 3.18 4.58 4.48 4.21 4.00 4.10 7.19 7.37 5.05
giraffe 8.49 6.99 4.77 3.83 12.7 8.08 8.82 6.11 14.4 9.27 11.6 6.69 22.0 11.2 17.4 7.40 24.9 17.3 25.1 7.95

pig 3.86 2.08 3.39 2.97 7.02 3.74 5.84 3.27 11.3 7.08 9.07 3.58 9.22 9.85 10.3 3.43 10.5 9.43 14.0 4.17
goat 3.68 2.57 3.30 2.00 7.00 4.74 5.45 3.35 10.6 8.61 6.34 3.41 13.1 13.3 8.22 4.14 24.8 21.1 12.3 5.39

HUMAN station 2.53 2.01 2.37 1.53 4.24 6.66 8.58 3.82 6.66 14.0 16.0 6.80 8.85 20.9 21.3 9.01 9.81 24.5 24.7 9.68
couple 4.09 3.54 3.78 2.27 10.0 5.90 12.7 4.35 18.1 11.0 17.2 4.81 17.5 16.0 23.4 5.13 7.36 26.6 31.7 6.22
park 3.95 3.49 3.33 2.93 6.28 4.14 4.47 5.06 8.97 4.60 5.07 5.19 11.8 6.54 6.91 5.39 20.5 9.18 8.10 5.85

STATIC car 1.35 1.38 0.73 0.54 1.43 1.42 1.45 0.87 1.52 1.79 2.18 0.99 1.76 5.93 5.08 2.26 2.90 17.5 12.4 8.10
cup 3.72 1.34 1.19 1.16 4.14 1.87 1.61 1.73 5.16 4.65 3.02 1.93 5.45 12.9 9.31 2.15 8.21 28.2 25.3 4.72
pot 0.94 1.49 0.80 0.70 1.58 1.56 1.05 1.28 1.71 2.11 1.41 1.49 2.43 5.03 2.98 2.95 3.96 12.3 6.90 5.41
toy 1.02 1.32 0.70 0.58 1.15 1.45 1.29 1.18 1.25 2.05 1.44 1.23 1.28 3.19 2.16 1.30 1.34 7.66 2.95 1.38

SNAPCUT animation 1.98 1.26 1.83 1.59 5.18 3.43 3.52 4.46 12.9 5.59 7.45 4.46 11.9 6.38 6.78 4.55 22.0 10.1 11.4 6.90
fish 2.80 1.97 2.54 1.80 7.68 5.87 7.32 5.66 13.8 9.25 10.8 7.61 51.8 21.7 25.7 17.5 105 41.8 48.2 39.6

horse 3.99 4.14 3.00 2.62 5.18 11.3 12.6 3.93 7.43 28.4 25.9 5.48 8.39 45.1 37.8 6.80 10.9 68.1 48.0 8.77

FAST bball 1.55 1.71 1.90 1.61 6.86 3.24 2.97 2.16 10.0 4.70 4.95 2.75 18.4 8.47 8.89 3.90 20.0 10.8 10.8 4.37
cheetah 7.17 3.99 5.07 4.41 13.4 6.82 6.06 4.87 21.1 10.6 7.47 5.97 31.5 16.6 7.68 8.16 59.4 26.6 8.21 9.59
dance 6.65 9.19 7.55 6.62 29.8 17.7 30.9 12.4 40.2 37.9 53.4 18.3 56.1 50.8 43.0 18.7 109 64.4 48.6 34.0
hiphop 8.02 4.62 6.94 3.37 36.4 19.3 27.8 8.48 73.4 32.0 39.1 11.0 67.5 51.1 33.7 14.2 111 73.6 44.8 21.0
kongfu 5.42 3.71 5.78 3.28 26.6 18.4 12.3 5.30 25.6 24.8 18.8 6.59 40.2 40.8 17.9 8.00 21.6 32.9 16.5 7.95
skater 6.33 5.33 5.09 4.89 11.5 8.93 8.84 6.78 25.4 21.2 11.7 8.02 38.7 40.8 29.6 22.8 48.5 72.0 85.2 46.8

supertramp 14.7 8.99 17.4 6.17 52.7 32.2 35.4 22.6 76.8 42.2 41.7 31.3 129 60.5 57.4 42.9 159 91.9 55.2 50.8
tricking 42.2 9.71 11.9 5.02 31.3 21.4 29.0 8.31 48.4 41.6 46.6 17.9 79.4 70.9 35.8 21.3 93.9 94.3 47.3 61.6

set refinement. While our implementation could be optimized fur-
ther, the current running times already enable interactive response
times. This is particularly true for a multi-threaded implementa-
tion, which can propagate some masks while the user is interacting
with another frame. A real-time capture of an interactive session is
included in the supplementary video.

To thoroughly evaluate our method, we collected five sets of video
clips, with representative frames shown in Figure 4. The SNAP-
CUT set contains three examples from Bai et al. [2009]. The AN-
IMAL, HUMAN, and STATIC sets are from the training data set
of Zhong et al. [2012]. The FAST set is a new set we collected,
featuring very fast motion and significant foreground deformations.
There are 22 video clips in total, and for each example, we obtained
the ground truth foreground masks from the original datasets (for
ANIMAL, HUMAN, STATIC) or by careful manual segmentation.

4.1 Comparison and Evaluation

We compare our method’s mask transfer accuracy with sev-
eral alternatives, including the state-of-the-art discontinuity-aware
method of Zhong et al. [2012] (Z12), and the Rotobrush tool in
Adobe AfterEffects (RB), which is based on the Video SnapCut
method of [Bai et al. 2009]. In order to compare with the state-of-
the-art segmentation tracking results in computer vision, we also
include in this comparison the recent SeamSeg method [Ramakanth
and Babu 2014], which has proved itself as a top performer on the
SegTrack benchmark [Tsai et al. 2010]2.

2We also evaluated our method on the SegTrack benchmark, which is
not well suited for video cutout performance evaluation (low resolution and
low quality video sequences, without a sufficiently accurate ground truth).
The results of this evaluation are included in the supplementary materials.

The error rates of the different methods are reported in Table 1.
Errors are computed as the ratio between the wrongly classified ar-
eas of the transferred mask and the foreground area of the ground
truth mask. For each test sequence we use 128 frames, and com-
pute the automatic transfer of a ground truth mask from frame i to
i+ d, for i = 0, 16, . . . , 96, for several different transfer distances
d ∈ [1, 4, 8, 16, 32]. Each error reported in the table is the average
error for all of the mask transfers for a particular distance d com-
puted for the sequence. In addition to the quantitative comparison,
Figure 5 shows a visual comparison of some of the resulting masks
produced by the different methods.

As may be seen from Table 1, our method outperforms all of the
other methods on the vast majority of examples across the five
datasets. The Rotobrush tool exhibits the best performance on dis-
tant mask transfer in most of the STATIC sequences. However, it
uses only local classifiers for mask propagation, so it is sensitive
to fast motion and to any topological changes, as evidenced by the
high errors on examples like “giraffe”, “goat”, and the clips in the
FAST set. Z12 handles temporal discontinuities better than Roto-
brush, so its error rates are lower on most sequences (except the
STATIC set). However, for faster motions and longer transfer dis-
tances it still generates significant errors, due to the limited and
fixed sampling range of its classifiers. The SeamSeg method per-
forms better than Z12 on distant transfer in nearly all of the FAST
sequences, and is the best performer on two of these, for a stride of
32. Our method performs better than each of these methods overall,
achieving the lowest error in the vast majority of cases.

A visual examination of the resulting masks shows that our method
produces more coherent results than Z12, which sometimes tends
to introduce false background holes in the foreground region (see
the “couple” example in Figure 5). This is because Z12 does not
enforce any coherency constraint in each directional window. In



cheetah cup couple horse kongfu goat

Figure 5: From top to bottom row we show results of Rotobrush, Zhong et al. [2012], SeamSEG, and our method. Each row shows the result
of automatic mask transfer across a distance of 16 frames, for six different examples. Please watch the companion video!

addition, due to the lack of coherency and the use of single pixel
color for classification, Z12 is more sensitive to similar colors be-
tween foreground and background than our patch-based classifica-
tion method (see “horse” in Figure 5). Our results are also notice-
ably more coherent than those produced by SeamSeg.

In Table 2 we examine the error rates for mask transfer by our
method when performing the transfer from frame i to frame i+8 us-
ing different strides. A stride of 1 means that we start with a ground
truth mask in frame i, transfer it to frame i+ 1, from frame i+ 1 to
i+2, and so forth, until we obtain the mask at frame i+8. The entire
process is automatic, without manual correction of errors along the
way, and the reported error is computed with respect to the ground
truth mask at frame i+ 8. This table shows that the accuracy of our
mask transfer generally increases when using a larger stride. While
this may appear counter-intuitive at first glance, the reason for this
behavior is that when using smaller strides there is an accumulation
of errors from the multiple steps. Figure 6 shows such an example.
Small errors may be difficult for the user to notice. And if these
small errors are not fixed at every frame, they quickly accumulate
and add up to a larger error after a few propagation steps. However,
it may also be seen that on some of the fast moving sequences, our
method performs better with a smaller stride of 4 frames.

The same table also reports the error rates for interpolating an inter-
mediate frame i from two source frames (with ground truth masks)
either 4 frames (i4) or 8 frames away (i8). It may be seen that inter-
polation (bi-directional transfer) results in a smaller error rate than
one-sided transfer for the same stride in all cases but one (a particu-
larly challenging sequence). These results demonstrate that our dis-
tant mask propagation is well suited for a workflow that combines
distant mask transfer with interpolation. Note that we did not mea-
sure the i4/i8 errors with ground-truth on one side and propagated
mask on the other side, since in our proposed interactive workflow
the user is expected to fix errors in the i+4/i+8 frame before inter-
polation is applied to generate the intermediate frame. An example

of such a workflow is shown in the real-time captured interactive
sessions in the companion video and the supplementary materials.

Figure 7: Comparison with large displacement optical flow. Top
row (left to right): source frame, source mask, and target frame.
2nd row: optical flow fields of Brox et al., DeepFlow, and Bao et al.
3rd row: corresponding resulting masks. 4th row: our combined
NNF, resulting mask, and ground truth mask.

In principle, one could consider performing mask transfer using op-
tical flow. Figure 7 compares our results to ones that we were able
to obtain using several optical flow methods, including the classical
method by Brox et al. [2004], DeepFlow [Weinzaepfel et al. 2013],
and Bao et al. [2014]. Note that the last two methods specifically
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Figure 6: Comparison of distant transfer and sequential transfer. (a)-(d) are the results of sequential propagation from frame 80 to frame
88; note that the small error in frame 83 (circled in red) is difficult to notice, yet it accumulates to a significant error in frame 85 and onward.
(e) The distant transfer result by our method.

Table 2: Error rates for automatic mask transfer by our method
from frame i to i + 8 using four different strides. Also shown (in
parentheses) the error rates for interpolation: i4 means interpolat-
ing frame i from i− 4 and i+ 4.

1 2 4 (i4) 8 (i8)

ANIMAL bear 2.94 2.85 2.79 (1.91) 2.82 (2.10)
giraffe 10.3 8.28 7.35 (4.51) 6.27 (4.79)

pig 5.22 4.00 3.49 (2.44) 3.24 (2.69)
goat 4.53 3.77 3.11 (2.39) 2.98 (2.57)

HUMAN station 6.14 6.03 5.72 (2.62) 6.55 (4.38)
couple 5.95 5.21 4.64 (3.52) 4.71 (4.03)
park 5.89 5.33 4.71 (2.24) 4.89 (2.70)

STATIC car 1.52 1.30 1.09 (0.82) 0.98 (0.90)
cup 2.79 2.46 2.13 (1.28) 2.20 (1.36)
pot 1.47 1.41 1.35 (0.93) 1.29 (0.93)
toy 1.51 1.44 1.22 (0.78) 1.11 (0.78)

SNAPCUT animation 3.64 3.66 3.26 (1.59) 3.08 (2.07)
fish 3.35 2.95 2.91 (2.25) 4.05 (2.43)

horse 5.81 4.99 4.61 (3.46) 4.55 (3.95)

FAST bball 2.57 2.42 2.10 (1.68) 2.12 (1.67)
cheetah 6.10 5.94 5.98 (5.03) 6.11 (5.35)
dance 12.8 10.4 13.7 (10.6) 15.9 (10.4)
hiphop 8.66 7.95 7.57 (3.48) 8.05 (4.85)
kongfu 6.47 7.26 5.94 (3.82) 6.94 (6.93)
skater 15.1 11.9 8.28 (5.56) 7.57 (5.98)

supertramp 19.3 16.4 15.5 (10.2) 17.0 (19.1)
tricking 15.6 16.1 14.9 (7.47) 18.6 (10.1)

target large displacement optical flow. As can be seen in Figure
7, these methods are less successful in propagating the foreground
mask, even between two frames with relatively mild displacements.
A quantitative comparison with the latter two methods, as well as
the unmodified PatchMatch algorithm [Barnes et al. 2009] is re-
ported in Table 3.

Figure 8 shows an example of our method for automatic 8-frame
interpolation, where the foreground undergoes a drastic change in
both shape and appearance (turning around). Our automatically in-
terpolated results are accurate except at some blurry edges, and note
that topology changes are also handled well. For comparison, we
show the results of Agarwala et al. [2004], which fails on this ex-
ample, due to the large change in the foreground shape. Note that
the method of [Agarwala et al. 2004] requires correspondences be-
tween the two ends frames to be specified by the user, which is
difficult for the shown case, even when using the interactive tool
provided in the author’s software.

User study. We conducted a small scale informal user study to as-

......

Figure 8: Automatic interpolation from frames 256 and 264 (top
row) to intermediate frames. The middle and bottom rows are the
results of our method and [Agarwala et al. 2004], shown for frames
258, 260 and 262.

sess the degree to which our more accurate mask transfer and mask
interpolation mechanism can reduce the user effort involved in ex-
tracting a cutout from a video sequence. Nine users took part in our
user study. None of the users had prior experience with any interac-
tive video segmentation tools, but four of them were familiar with
object selection in Adobe Photoshop. The users were first trained
in the use of the different video cutout tools, using several training
video clips. A user passed his/her training, only once he/she could
achieve an error rate below a certain threshold, within an allotted
amount of time. Each trained user was then asked to segment sev-
eral test video clips (different from the training ones), as accurately
and as quickly as possible. Specifically, each user was assigned the
task of performing a video cutout of five short (32 frames) video
sequences from our test set, with each of the three systems (Roto-
Brush, Z12 and JumpCut), resulting in a total of 15 video cutout
tasks. The tasks were assigned to each user in a random order.

We recorded the number of strokes that each user had to place for
each sequence, as well as the combined length of these strokes. The
sum of stroke lengths is also reported, because some users may use
a few long strokes to same effect as many short strokes. The total
time that it took each user to complete each task was also recorded.
Finally, we computed the average mask error using the available
ground truth masks, to verify that the extracted masks were all com-
parable in terms of their accuracy. The results of the study are
summarized in Table 4, averaged over all users for each task. It
may be seen that in almost all cases, our method required consider-



Table 3: Error rates for mask transfer using optical flow methods,
as well as unmodified PatchMatch to compute the NNF. Masks are
propagated from frame i to i+ 8 with stride = 1. B14 – [Bao et al.
2014], DF – [Weinzaepfel et al. 2013], PM – [Barnes et al. 2009],
JC – our split localized NNFs.

B14 DF PM JC

ANIMAL bear 28.6 50.0 3.19 2.86
giraffe 42.0 38.8 10.6 9.34

pig 34.2 50.1 5.09 4.35
goat 16.3 39.5 5.92 5.26

HUMAN station 16.0 30.3 18.9 7.64
couple 17.6 35.3 22.7 5.77
park 19.6 24.0 7.21 5.69

STATIC car 5.08 17.7 5.35 1.05
cup 7.92 35.8 5.24 2.17
pot 7.24 17.9 1.92 1.47
toy 6.56 6.47 4.05 1.24

SNAPCUT animation 15.8 17.4 6.69 4.25
fish 7.59 18.6 14.0 3.09

horse 12.2 58.7 19.4 4.50

FAST bball 31.1 45.3 6.87 5.03
cheetah 32.5 47.4 9.97 7.06
dance 55.3 123 50.3 13.4
hiphop 59.2 94.3 46.0 9.11
kongfu 58.5 83.9 20.4 13.2
skater 56.9 61.4 22.4 11.6

supertramp 77.0 73.4 43.2 19.1
tricking 103 122 44.7 15.0

ably fewer strokes to be placed, with a correspondingly smaller total
stroke length. As a result, the total task completion time is lower
in most cases. It should be noted that the task completion times is
greatly affected by the UI, whose design is outside the scope of this
paper, as well as by other factors, which our informal study does
not attempt to account for.

5 Conclusions and Future Work

We have presented a video cutout technique designed specifically
to excel in fast motion sequences. The challenge in transferring a
mask to a frame exhibiting a large motion is that techniques based
on local statistics are likely to be less effective, as the changes are
non-local. Our approach is based on the efficiency of advanced
methods for computing the nearest neighbor field (NNF) between
two images. The key is that these methods are non-local, but at the
same time they generate a coherent mapping. Often, in fast motion
sequences, it is the foreground object that changes fast and signif-
icantly, while the background is more stable, reflecting the camera
motion only. Thus, we have separated the NNF of the foreground
and background, avoiding the often harmful effort to keep the two
coherent. The same split-NNF is also used in our edge classifier,
which in turn further improves the performance of level-set based
cutout.

Our method is still challenged by ambiguities in color and texture
between the foreground and the background. Such ambiguities in-
troduce errors into the NNFs that we compute and use, as well as
into our edge classifier. Furthermore, the edge classifier heavily re-
lies on edge detection (currently provided by Dollár and Zitnick’s
method [2013]), thus carrying over the limitations of the edge de-
tector, especially when blurry edges are present. This is demon-
strated in Figure 9. To overcome this weakness, a stronger shape

Table 4: User study of three different real-time interactive video
cutout methods. RB – RotoBrush (based on [Bai et al. 2009]), Z12
– [Zhong et al. 2012], JC – our JumpCut method.

RB Z12 JC

couple number of strokes 95.44 151.22 75.22
sum of stroke lengths 3285.11 4091.33 2499.22

run time 547.33 501.44 396.67
mask error 4.36 3.60 3.15

cup number of strokes 163.00 60.33 19.22
sum of stroke lengths 12166.56 1339.11 679.11

run time 576.44 196.89 175.44
mask error 2.01 1.63 1.38

fish number of strokes 51.11 132.89 34.33
sum of stroke lengths 3214.00 8166.67 2024.33

run time 266.67 313.44 198.22
mask error 2.74 3.10 2.08

pig number of strokes 85.78 74.00 29.67
sum of stroke lengths 5689.00 2509.00 1172.78

run time 354.11 214.11 201.22
mask error 3.63 2.01 2.03

tricking number of strokes 123.33 250.33 119.44
sum of stroke lengths 6482.56 13096.56 5677.89

run time 406.33 443.11 534.22
mask error 4.07 4.31 3.29

prior is required. Another challenge is presented by disocclusions,
as demonstrated in Figure 10.

Being able to handle large changes in the foreground has two im-
mediate applications. First, it allows dealing with fast motion se-
quences where consecutive frames exhibit large changes with large
magnitude optical flow. Second, it allows leaping between dis-
tant frames and then interpolating the in-between frames, using
decreasing strides. This interpolating scheme is somewhat counter-
intuitive, since it seems that incremental steps between more similar
frames should yield fewer errors. However, as we have shown, the
incremental approach accumulates more errors, than leaping for-
ward and then interpolating.

One avenue for future work is to associate a confidence value to
a mask transfer, allowing the system to automatically employ an
adaptive stride size for mask transfer and interpolation. Another
possible improvement is to take advantage of cyclic motions, where
similar foreground poses may be found many frames apart, and ex-
tremely long strides can be used effectively. An intriguing direc-
tion, which we also consider, is to extend this idea further, and treat

Figure 9: Error due to failure to detect blurry edges. Left: target
image. Middle: edge map, note that no strong edges are detected
in the red circles. Right: mask transfer result.



Figure 10: Failure case of our method due to complex color and
dis-occlusion: the ball is hidden in the source frame (left). Right:
the target frame and the resulting contour.

the video sequence as an unordered set of frames. Similar frames
can then be clustered and processed together, without relying on the
natural time coherency along the video.
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